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In this article, we present two versions of a simplified maximum a posteriori

decoding algorithm. The algorithms work in a sliding window form, like the Viterbi

algorithm, and can thus be used to decode continuously transmitted sequences

obtained by parallel concatenated codes, without requiring code trellis termination.

A heuristic explanation is also given of how to embed the maximum a posteriori

algorithms into the iterative decoding of parallel concatenated codes (turbo codes).

The performances of the two algorithms are compared on the basis of a powerful

rate 1//3 parallel concatenated code. Basic circuits to implement the simplified a

posteriori decoding algorithm using lookup tables, and two further approximations

(linear and threshold), with a very small penalty, to eliminate the need for lookup

tables are proposed.

I. Introduction and Motivations

The broad framework of this analysis encompasses digital transmission systems where the received

signal is a sequence of wave forms whose correlation extends well beyond T, the signaling period. There

can be many reasons for this correlation, such as coding, intersymbol interference, or correlated fading. It

is well known [1] that the optimum receiver in such situations cannot perform its decisions on a symbol-

by-symbol basis, so that deciding on a particular information symbol uk involves processing a portion of

the received signal Td seconds long, with Ta > T. The decision rule can be either optimum with respect

to a sequence of symbols, u'_ A= (uk,uk+l,'" ,uk+n-1), or with respect to the individual symbol, uk.

The most widely applied algorithm for the first kind of decision rule is the Viterbi algorithm. In its

optimum formulation, it would require waiting for decisions until the whole sequence has been received.

In practical implementations, this drawback is overcome by anticipating decisions (single or in batches)

on a regular basis with a fixed delay, D. A choice of D five to six times the memory of the received data

is widely recognized as a good compromise between performance, complexity, and decision delay.

Optimum symbol decision algorithms must base their decisions on the maximum a posteriori (MAP)

probability. They have been known since the early seventies [2,3], although nmch less popular than the

Viterbi algorithm and almost never applied in practical systems. There is a very good reason for this

neglect in that they yield performance in terms of symbol error probability only slightly superior to

the Viterbi algorithm, yet they present a much higher complexity. Only recently, the interest in these
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algorithms has seen a revival in connection with the problem of decoding concatenated coding schemes.

Concatenated coding schemes (a class in which we include product codes, multilevel codes, generalized
concatenated codes, and serial and parallel concatenated codes) were first proposed by Forney [4] as a

means of achieving large coding gains by combining two or more relatively simple "constituent" codes.

The resulting concatenated coding scheme is a powerful code endowed with a structure that permits an

easy decoding, like "stage decoding" [5] or "iterated stage decoding" [6].

To work properly, all these decoding algorithms cannot limit themselves to passing the symbols decoded

by the inner decoder to the outer decoder. They need to exchange some kind of soft information. Actually,

as proved by Forney [4], the optimum output of the inner decoder should be in the form of the sequence

of the probability distributions over the inner code alphabet conditioned on the received signal, the a

posteriori probability (APP) distribution. There have been several attempts to achieve, or at least to
approach, this goal. Some of them are based on modifications of the Viterbi algorithm so as to obtain, at

the decoder output, in addition to the "hard"-decoded symbols, some reliability information. This has led

to the concept of "augmented-output," or the list-decoding Viterbi algorithm [7], and to the soft-output

Viterbi algorithm (SOVA) [8]. These solutions are clearly suboptimal, as they are unable to supply the

required APP. A different approach consisted in revisiting the original symbol MAP decoding algorithms

[2,3] with the aim of simplifying them to a form suitable for implementation [9-12].

In this article, we are interested in soft-decoding algorithms as the main building block of iterative stage

decoding of parallel concatenated codes. This has become a "hot" topic for research after the successful

proposal of the so-called turbo codes [6]. They are (see Fig. 1) parallel concatenated convolutional codes

(PCCC) whose encoder is formed by two (or more) constituent systematic encoders joined through an
interleaver. The input information bits feed the first encoder and, after having been interleaved by the

interleaver, enter the second encoder. The codeword of the parallel concatenated code consists of the

input bits to the first encoder followed by the parity check bits of both encoders. Generalizations to more
than one interleaver are possible and fruitful [13].
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Fig. 1. Parallel concatenated convolutionel code.

The suboptimal iterative decoder is modular and consists of a number of equal component blocks

formed by concatenating soft decoders of the constituent codes (CC) separated by the interleavers used
at the encoder side. By increasing the number of decoding modules and, thus, the number of decoding

iterations, bit-error probabilities as low as 10 -5 at Eb/No = 0.0 dB for rate 1/4 PCCC have been shown

by simulation [13]. A version of turbo codes employing two eight-state convolutional codes as constituent
codes, an interleaver of 32 x 32 bits, and an iterative decoder performing two and one-half iterations

with a complexity of the order of five times the maximum-likelihood (ML) Viterbi decoding of each

constituent code is presently available on a chip yielding a measured bit-error probability of 0.9 x 10 -8

at Eb/No = 3 de [14].
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In recent articles [15,17], upper bounds to the ML bit-error probability of PCCCs have been proposed.

As a by-product, it has been shown by simulation that iterative decoding can approach quite closely the

ML performance. The iterative decoding algorithm was a simplification of the algorithm proposed in [3],

whose regular steps and limited complexity seem quite suitable to very large-scale integration (VLSI)

implementation. Simplified versions of the algorithm [3] have been proposed and analyzed in [12] in the
context of a block decoding strategy that requires trellis termination after each block of bits. Similar

simplification also was used in [16] for hardware implememtation of the MAP algorithm.

In this article, we will describe two versions of a simplified MAP decoding algorithm that can be used

as building blocks of the iterative decoder to decode PCCCs. A distinctive feature of the algorithms is

that they work in a "sliding window" form, like the Viterbi algorithm, and thus can be used to decode

"continuously transmitted" PCCCs, without requiring trellis termination and a block-equivalent structure

of the code. The simplest among the two algorithms will be compared with the optimum block-decoding

algorithm proposed in [3]. The comparison will be given in terms of bit-error probability when the
algorithms are embedded into iterative decoding schemes for PCCCs. We will choose, for comparison,

a very powerful PCCC scheme suitable for deep-space applications [18-20] and, thus, working at a very

low signal-to-noise ratio.

II. System Context and Notations

As previously outlined, our final aim is to find suitable soft-output decoding algorithms for iterated

staged decoding of parallel concatenated codes employed in a continuous transmission. The core of such

algorithms is a procedure to derive the sequence of probability distributions over the information symbols'
alphabet based on the received signal and constrained on the code structure. Thus, we will start by this

procedure and only later will we extend the description to the more general setting.

Readers acquainted with the literature on soft-output decoding algorithms know that one burden in

understanding and comparing the different algorithms is the spread and, sometimes, mess of notations

involved. For this reason, we will carefully define the system and notations and then stick consistently to
them for the description of all algorithms.

For the first part of the article, we will refer to the system of Fig. 2. The information sequence u,

composed of symbols drawn from an alphabet U = {ul,...,ui} and emitted by the source, enter an
encoder that generates code sequences c. Both source and code sequences are defined over a time index

set K (a finite or infinite set of integers). Denoting the code alphabet C = {Cl,..., CM), the code C can

be written as a subset of the Cartesian product of C by itself K times, i.e.,

CcCK

The code symbols ck (the index k will always refer to time throughout the article) enter the modulator,

which performs a one-to-one mapping of them with its signals, or channel input symbols xk, belonging
to the set X = {xl,-",XM}. 1

The channel symbols xk are transmitted over a stationary memoryless channel with output symbols Yk-
The channel is characterized by the transitions probability distribution (discrete or continuous, according

to the channel model) P(y[x). The channel output sequence is fed to the symbol-by-symbol soft-output
demodulator, which produces a sequence of probability distributions "_/k(C) over C conditioned on the

received signal, according to the memoryless transformation

1For simplicity of notation, we have assumed that the cardinality of the modulator equals that of the code alphabet. In
general, each coded symbol can be mapped in more than one channel symbol, as in the case of multilevel codes or trellis
codes with parallel transitions. The extension is straightforward.
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y DEMODULATOR DECODER =

Fig.2. Thetransmissionsystem.

P(zk = yk)= P(Ykl k = (1)

where we have assumed to know the sequence of the a priori probability distributions of the channel input

symbols (Pk(x) : k e K) and made use of the one-to-one mapping C --* X.

The sequence of probability distributions "yk(c) obtained by the modulator on a symbol-by-symbol

basis is then supplied to the soft-output symbol decoder, which processes the distributions in order to

obtain the probability distributions Pk(uly ). They are defined as

Pk(ulY) _ P(uk = uly) (2)

The probability distributions Pk(uly ) are referred to in the literature as symbol-by-symbol a posteriori

probabilities (APP) and represent the optimum symbol-by-symbol soft output.

From here on, we will limit ourselves to the case of time-invariant convolutional codes with N states,

use the following notations with reference to Fig. 3, and assume that the (integer) time instant we are
interested in is the kth:

(1)

(2)

(3)

(4)

S_ is the generic state at time k, belonging to the set S = {$1,.-., SN}

S_-(u') is one of the precursors of Si, and precisely the one defined by the information
symbol u' emitted during the transition S_-(u') --* S_. 2

S+(u) is one of the successors of Si, and precisely the one defined by the information
symbol u emitted during the transition Si _ S+(u).

To each transition in the trellis, a signal x is associated, which depends on the state
from which the transition originates and on the information symbol u determining that

transition. When necessary, we will make this dependence explicit by writing x(u', S_)

when the transition ends in Sz and x(Si, u) when the transition originates from Si.

III. The BCJR Algorithm

In this section, we will restate in our new notations, without derivation, the algorithm described

in [3], which is the optimum algorithm to produce the sequence of APP. We will call this algorithm the

2The state $1 and the symbol u' uniquely specify the precursor S[(u') in the case of the class of recursive convolutional
encoders, like the ones we are interested in (when the largest degree of feedback polynomial represents the memory
of a convolutional encoder). The extension to the case of feed-forward encoders and other nonconventional recursive
convolutional encoders is straightforward.

66



$1 $1 $1

I I I

, (S i ,u )

c(.',si) I " II
I I I

SN SN SN

k-1 k k+l

Fig. 3. The meaning of notations.

BCJR algorithm from the authors' initials. 3 We consider first the original version of the algorithm, which

applies to the case of a finite index set K = {1,-.., n} and requires the knowledge of the whole received

sequence y = (Yl,"" ,yn) to work. In the following, the notations u,c,x, and y will refer to sequences

n-symbols long, and the integer time variable k will assume the values 1,...,n. As for the previous

assumption, the encoder admits a trellis representation with N states, so that the code sequences c (and

the corresponding transmitted signal sequences x) can be represented as paths in the trellis and uniquely

associated with a state sequence s -- (So,.. •, sn) whose first and last states, So and sn, are assumed to

be known by the decoder. 4

Defining the a posteriori transition probabilities from state S_ at time k as

ak(S_, u) & P(uk = u, sk-t = Sily) (3)

the APP P(uly ) we want to compute can be obtained as

Pk(uly) =_-'_ak(S,,u) (4)

s,

Thus, the problem of evaluating the APP is equivalent to that of obtaining the a posteriori transition

probabilities defined in Eq. (3). In [3], it was proven that the APP can be computed as

ak (S_, u) = h,,ak-t (S_)"fk (x(Si, u))flk (S + (u)) (5)

where

a The algorithm is usually referred to in the recent literature as the "Bahl algorithm"; we prefer to credit all the authors:
L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv.

4 Lower-case sk denotes the states of a sequence at time k, whereas upper-case Si represents one particular state belonging
to the set S.
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• ha is such that

__, ak(S_, u) = 1
Si ,u

• 3"k(x(S_, u)) are the joint probabilities already defined in Eq. (1), i.e.,

3"k(x) _= P(yk,xk = x) = P(yklxk = x) . P(xk = x) (6)

The 3"s can be calculated from the knowledge of the a priori probabilities of the channel

input symbols x and of the transition probabilities of the channel P(Yk Ixk = x). For
each time k, there are M different values of 3' to be computed, which are then associated

to the trellis transitions to form a sort of branch metrics. This information is supplied

by the symbol-by-symbol soft-output demodulator.

• ak(S_) are the probabilities of the states of the trellis at time k conditioned on the past
received signals, namely,

(7)

where y_ denotes the sequence Yl,Y2,'",Yk. They can be obtained by the forward
recursion 5

= h. (u))3'k(x(u,s,)) (8)

with ha a constant determined through the constraint

= 1
S,

and where the recursion is initialized as

1 if S, = So (9)a°(Si)= 0 otherwise

• flk(Si) are the probabilities of the trellis states at time k conditioned on the future
Sreceived signals P(sk = ,lYk+l)- They can be obtained by the backward recursion

(10)

5 For feed-forward encoders and nonconventional recursive convolutional encoders like G(D) = [1, (1 + D + D2)/(1 + D)]

in Eq. (8), the summation should be over all possible precursors S_-(u) that lead to the state S,, and x(u, S_) should be

replaced by x(S_ (u), u). Then such modifications are also required for Eqs. (18) and (26). In Eqs. (22), (29), and (32),

the maximum should be over all S,-(u) that lead to S_. The c(u, S_) should be replaced by c(S_-(u), u).



with h_ a constant obtainable through the constraint

E/3k (S,.) = 1
Si

and where the recursion is initialized as

{,_.(s,) = o
if S_ = s_ (II)
otherwise

We can now formulate the BCJR algorithm by the following steps:

(1) Initialize a0 and _ according to Eqs. (9) and (11).

(2)As soon as each term Yk of the sequence y is received, the demodulator supplies to the
decoder the "branch metrics" 3'k of Eq. (6), and the decoder computes the probabilities

ak according to Eq. (8). The obtained values of ak(Si) as well as the ?k are stored for

all k, S_, and x.

(3) When the entire sequence y has been received, the decoder recursively computes the

probabilities f_k according to the recursion of Eq. (10) and uses them together with the
stored a's and ?'s to compute the a posteriori transition probabilities ak(Si, u) according

to Eq. (5) and, finally, the APP Pk(u[y) from Eq. (4).

A few comments on the computational complexity of the finite-sequence BCJR algorithm can be found

in [3].

IV. The Sliding Window BCJR (SW-BCJR)

As previous description made clear, the BCJR algorithm requires that the whole sequence has been
received before starting the decoding process. In this aspect, it is similar to the Viterbi algorithm in its

optimum version. To apply it in a PCCC, we need to subdivide the information sequence into blocks, 6
decode them by terminating the trellises of both CCs, 7 and then decode the received sequence block by

block. Beyond the rigidity, this solution also reduces the overall code rate.

A more flexible decoding strategy is offered by a modification of the BCJR algorithm in which the

decoder operates on a fixed memory span, and decisions are forced with a given delay D. We call this

new, and suboptimal, algorithm the sliding window BCJR (SW-BCJR) algorithm. We will describe two
versions of the sliding window BCJR algorithm that differ in the way they overcome the problem of

initializing the backward recursion without having to wait for the entire sequence. We will describe the

two algorithms using the previous step description suitably modified. Of the previous assumptions, we

retain only that of the knowledge of the initial state so, and thus assume the transmission of semi-infinite

code sequences, where the time span K ranges from 1 to eo.

0 The presence of the interleaver naturally points toward a block length equal to the interleaver length.

7The termination of trellises in a PCCC has been considered a hard problem by several authors. As shown in [13], it is,

indeed, quite an easy task.
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A. The First Version of the Sliding Window BCJR Algorithm (SW1-BCJR)

Here are the steps:

(i)

(2)

Initialize a0 according to Eq. (9).

Forward recursion at time k: Upon receiving Yk, the demodulator supplies to the de-

coder the M distinct branch metrics, and the decoder computes the probabilities _k(S_)
according to Eqs. (6) and (8). The obtained values of ak(Si) are stored for all S_, as well
as the "_k(x).

(3) Initialization of the backward recursion (k > D):

(12)

(4) Backward recursion: It is performed according to Eq. (10) from time k - 1 back to time
k-D.

(5) The a posteriori transition probabilities at time k - D are computed according to

ak-D( S_, u) = h,, . c_k-D-1( S_)Tk-D(x( S_, u) )Dk_D( S+ (u) ) (13)

(6) The APP at time k - D is computed as

Pk-D(uly) = _ ak-D(S,, U) (14)
Si

For a convolutional code with parameters (k0,n0), number of states N, and cardinality of the code
alphabet M = 2 '.°, the SW1-BCJR algorithm requires storage of N x D values of c_'s and M x D values

of the probabilities ")'k(x) generated by the soft demodulator. Moreover, to update the c_'s and f]'s for each

time instant, the algorithm needs to perform M x 2k° multiplications and N additions of 2k° numbers.

To output the set of APP at each time instant, we need a D-times long backward recursion. Thus, the
computational complexity requires overall

• (D + 1)M x 2k° multiplications

• (D + 1)M additions of 2k° numbers each

As a comparison, s the Viterbi algorithm would require, in the same situation, M x 2ko additions and

M x 2k°-way comparisons, plus the trace-back operations, to get the decoded bits.

B. The Second, Simplified Version of the Sliding Window BCJR Algorithm (SWR-BCJR)

A simplification of the sliding window BCJR that significantly reduces the memory requirements
consists of the following steps:

8 Though, indeed, not fair, as the Viterbi algorithm does not provide the information we need.
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(1) Initialize a0 according to Eq. (9).

(2) Forward recursion (k > D): If k > D, the probabilities ak-D-l(Si)

according to Eq. (8).

(3) Initialization of the backward recursion (k > D):

1 vsj_k(sj) = N'

are computed

(15)

(4) Backward recursion (k > D): It is performed according to Eq. (10) from time k - 1 back
to time k - D.

(5) The a posteriori transition probabilities at time k - D are computed according to

O'k_D(Si, U) .= h a • O_k_D_l(Si)"_k_D(X(_i, U))_k_D( Si+ (_t) ) (16)

(6) The APP at time k - D is computed as

Pk-D(UlY) : E ak-D(Si, U)
Si

(17)

This version of the sliding window BCJR algorithm does not require storage of the N × D values of

a's as they are updated with a delay of D steps. As a consequence, only N values of c_'s and M × D

values of the probabilities 7k(x) generated by the soft demodulator must be stored. The computational

complexity is the same as the previous version of the algorithm. However, since the initialization of the

/3 recursion is less accurate, a larger value of D should be set in order to obtain the same accuracy on

the output values Pk_D(uly ). This observation will receive quantitative evidence in the section devoted
to simulation results.

V. Additive Algorithms

A. The Log-BCJR

The BCJR algorithm and its sliding window versions have been stated in multiplicative form. Owing

to the monotonicity of the logarithm function, they can be converted into an additive form passing to
the logarithms. Let us define the following logarithmic quantities:
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Bk(S,) _ ]og[a_(S_)]

_-,k(,..qi,U) _=log[ark(S/, u)]

These definitions lead to the following A and B recursions, derived from Eqs. (8), (10), and (5):

Ak(S,) =log [_u exp{Ak-l(Si-(u)) +Fk(x(u, Si))} ] +HA

Bk(Si) =log [_u exp{Fk+l (x(Si,u)) + Bk+l (S+(u))}] + HB

Ek (S,, u) =Ak-1 (S,) + Fb (x(S,, u)) + Bk (S + (u)) + H_

with the following initializations:

f 0 if S_ = so
Ao(S_) -oo otherwise

J"0 if Si = sn
BI(Si) / -oo otherwise

(18)

(19)

(20)

B. Simplified Versions of the Log-BCJR

The problem in the recursions defined for the log-BCJR consists of the evaluation of the logarithm of

a sum of exponentials:

log exp{A,} !

An accurate estimate of this expression can be obtained by extracting the term with the highest expo-

nential,

so that

AM = maxA,
i

and by computing the second term of the right-hand side (RHS) of Eq. (21) using lookup tables. Further

simplifications and the required circuits for implementation are discussed in the Appendix.
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However,whenAM >> A_, the second term can be neglected. This approximation leads to the additive
logarithmic-BCJR (AL-BCJR) algorithm:

Ak( Si) = muax [Ak-I( S[ (u) ) + Fk(x(u, S,))] + HA (22)

Bk(S_) = max [Bk+l(S+(u)) + Fk+l(X(S,, u))] + HB (23)

Zk(S_, u) =Ak-I(S,) + Fk(x(Si, u)) + Bk(Si+(u)) + H_. (24)

with the same initialization of the log-BCJR.

Both versions of the SW-BCJR algorithm described in the previous section can be used, with obvious

modifications, to transform the block log-BCJR and the AL-BCJR into their sliding window versions,
leading to the SW-log-BCJR and the SWAL1-BCJR and SWAL2-BCJR algorithms.

Yl. Explicit Algorithms for Some Particular Cases

In this section, we will make explicit the quantities considered in the previous algorithms' descriptions

by making assumptions on the code type, modulation format, and channel.

h. Rate 1In Binary Systematic Convolutional Encoder

In this section, we particularize the previous equations in the case of a rate l/n binary systematic
encoder associated to n binary-pulse amplitude modulation (PAM) signals or binary phase shift keying

(PSK) signals.

The channel symbols x and the output symbols from the encoder can be represented as vectors of n

binary components:

_ [Cl,--',cn]ci • {0, 1}

_ [xl,"-,x.]x, • {A,-A}

_k _ [zkl,.--, zkn]

_k _ [ykl,"', yk.]

where the notations have been modified to show the vector nature of the symbols. The joint probabilities

7k(x), over a memoryless channel, can be split as

"/k(_2)= fi P(Yk.,Ixkm = xm)P(xkm = Xm) (25)
_'rt = 1

Since in this case the encoded symbols are n-tuple of binary symbols, it is useful to redefine the input

probabilities, 7, in terms of the likelihood ratios:
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,'kkm _= P(YkmlXkm = A)
P(ykmlXkm = -A)

,kAm _= P(xkm = A)

so that, from Eq. (25),

( km) - ....vk(_) = (_k_)o,,, A c,.,
A

l + _k._ l + Ak. ,

where h_ takes into account all terms independent of s_.

The BCJR call be restated as follows:

rrt=|

(26)

u m=l

(27)

1_I . xA 1cm(u'S_)ak(S,,u) = h,_h,,ak-,(S_) [)_km "kmJ flk(S+(u))
rn= l

(2s)

whereas its simplification, the AL-BCJR algorithm, becomes

Ak(Si) =mua'x {Ak-l(S_(u)) + _-_ Cm(U'Si) (Akm + A'_m) } + HAm=I

Bk(Si) =muax {Bk+l(S+(u)) + _-_ cm(Si'u) (Akm + A_m) } + HBm=I

(29)

(30)

Ek(S,,u) =Ak_,(S,) + _ c,,,(S,,u) (Akm + AAm) + Bk(S+(u))
m=l

(31)

where A stands for the logarithm of the corresponding quantity A.

B. The Additive White Gaussian Noise Channel

When the channel is the additive white Gaussian noise (AWGN) channel, we obtain the explicit

expression of the log-likelihood ratios Ak_ as
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LP(YkilXk, = -A)J

[ _ exp{- 2_al2 (Yki - A)2} 1 2A= log =

L _ exp{- 2--_2(Yki + A)2} J -_Yk,

Hence, the AL-BCJR algorithm assumes the following form:

m=l --_Ykm + AAm + HA

Bk(Si)__max{Bk+l(S:(u))+ _-_Cm(Si,u)( 2A A ))_, -_-_Yk,,_ + Akin + HB
m=l

(32)

(33)

Zk(S_'u) =Ak-l(S_) + _-_ cm(Si'u) ( 2A )_-Ykm + AOm + Bk(S+(u)) (34)
rn=l

In the examples presented in Section VIII, we will consider turbo codes with rate 1/2 component
convolutional codes transmitted as binary PAM or binary PSK over an AWGN channel.

VII. Iterative Decoding of Parallel Concatenated Convolutional Codes

In this section, we will show how the MAP algorithms previously described can be embedded into

the iterative decoding procedure of parallel concatenated codes. We will derive the iterative decoding

algorithm through suitable approximations performed on maximum-likelihood decoding. The description

will be based on the fairly general parallel concatenated code shown in Fig. 4, which employs three
encoders and three interleavers (denoted by 7r in the figure).

Let uk be the binary random variable taking values in {0, 1}, representing the sequence of information
bits u = (ul,-.. ,un). The optimum decision algorithm on the kth bit uk is based on the conditional
log-likelihood ratio Lk:

Lk = log P(uk = l[y)
P(uk = 0]y )

= log Eu:uk=l P(ylu) IIj#k P(uj) P(uk = 1)
)-:_u:u_=0 P(y[u) 1-Ij#k P(uj) + log P(uk O)

= log )-'_,:_=1 P(YlX(U)) Hj#k P(uj) P(uk = 1)
_-:_,_=0 P(YlX(U)) l-Ij#k P(uj) + log P(uk O)

where, in Eq. (35), P(uj) are the a priori probabilities.

(35)
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Fig. 4. Parallel concatenation of three convolutional codes.

If the rate ko/no constituent code is not equivalent to a punctured rate 1/n_o code or if turbo trellis-

coded modulation is used, we can first use the symbol MAP algorithm as described in the previous

sections to compute the log-likelihood ratio of a symbol u = u], u2," •, uk., given the observation y as

A(u) = log P(ulY------_)
P(01y)

where 0 corresponds to the all-zero symbol. Then we obtain the log-likelihood ratios of the jth bit within

the symbol by

L(uj) = log _.:_,:=t eX(")
_]u:u:/=O cA(u)

In this way, the turbo decoder operates on bits, and bit, rather than symbol, interleaving is used.

To explain the basic decoding concept, we restrict ourselves to three codes, but extension to several

codes is straightforward. In order to simplify the notation, consider the combination of the permuter

(interleaver) and the constituent encoder connected to it as a block code with input u and outputs xi,

i = 0, 1, 2, 3(x0 = u) and the corresponding received sequences as Yi, i = 0, 1, 2, 3. The optimum bit

decision metric on each bit is (for data with uniform a priori probabilities)

Lk = log Eu:u,=l P(yo]u)P(yz lu)P(y21u)P(y31u)

_Y'_-:_k =o P(yolu)P(yllU)P(y2[u)P(Y31 u)
(36)

but, in practice, we cannot compute Eq. (36) for large n because the permutations 7r2, 7r3 imply that Y2

and Y3 are no longer simple convolutional encodings of u. Suppose that we evaluate P(yi]u), i = 0, 2, 3

in Eq. (36) using Bayes' rule and using the following approximation:
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P(uly,) _ fl Pi(uk) (37)
k=l

Note that P(uly, ) is not separable in general. However, for i = 0, P(uIy0 ) is separable; hence, Eq. (37)

holds with equality. So we need an algorithm that approximates a nonseparable distribution P(uly,) _ P

with a separable distribution n =IIk=l Pi(uk) "_ Q. The best approximation can be obtained using the

Kullback cross-entropy minimizer, which minimizes the cross-entropy H(Q, P) = E{log(Q/P)} between
the input P and the output Q.

The MAP algorithm approximates a nonseparable distribution with a separable one; however it is
not clear how good it is compared with the Kullback cross-entropy minimizer. Here we use the MAP

algorithm for such an approximation. In the iterative decoding, as the reliability of the {uk} improves,

intuitively one expects that the cross-entropy between the input and the output of the MAP algorithm

will decrease, so that the approximation will improve. If such an approximation, i.e., Eq. (37), can be
obtained, we can use it in Eq. (36) for i = 2 and i = 3 (by Bayes' rule) to complete the algorithm.

Define L,k by

~

euk Lo,

P_(Uk) = 1 + e L'k (38)

where uk e {0, 1}. To obtain {/5} or, equivalently, {L,k}, we use Eqs. (37) and (38) for i = 0, 2, 3 (by

Bayes' rule) to express Eq. (36) as

Lk = f(y,, I_0, L2, L3, k) + Lok + L2k + L3k (39)

where L0k = 2Ayok/a 2 (for binary modulation) and

f(yl,Lo, L2, L3, k) = log

. ~ .

_u:_,. = 1P(Yll u) I]jek e"J (Lo, +L_j +L3j )

_,,:,,_ =o P(yl lu) 1-]j#k e"J (L,,j +L_j +L_j)
(40)

We can use Eqs. (37) and (38) again, but this time for i = 0, 1, 3, to express Eq. (36) as

Lk = f(y2, Lo,L1,L3, k) + Lok + Llk + Z3k (41)

and similarly,

Lk = f(y3, Lo,L,,L2, k) + gok + Llk + g2k (42)

A solution to Eqs. (39), (41), and (42) is

Llk =f(yl,Lo,L2,L3,k)

£_k =l(y2, L0, L,, L3, k)

L3k =f(Y3, Lo, L,, L2, k)

(43)

77



for k = 1,2,-.., n, provided that a solution to Eq. (43) does indeed exist. The final decision is then based
on

Lk = L0k + Llk + ]_2k + L3k (44)

which is passed through a hard limiter with zero threshold. We attempted to solve the nonlinear equations

in Eq. (43) for LI, 1_2, and !_3 by using the iterative procedure

_(rn+l) (m)_, _ f(m) ,_(m) t.\
lk ---- 0_I f(Yl' aa0' aa2 'aa3 '_) (45)

for k 1, 2,-. •, n, iterating on m. Similar recursions hold for _(m) and i(m)= _2k _3k "

We start the recursion with the initial condition L_ °) = l_ °) = _3f(°) = _,0. For the computation of

f(.), we can use any MAP algorithm as described in the previous sections, with permuters (direct and

inverse) where needed; call this the basic decoder D_, i -- 1,2,3. The LikT(m),z"---- 1,2,3 represent the

extrinsic information. The signal flow graph for extrinsic information is shown in Fig. 5 [13], which is a

fully connected graph without self-loops. Parallel, serial, or hybrid implementations can be realized based

on the signal flow graph of Fig. 5 (in this figure Y0 is considered as part of Yl). Based on our equations,
each node's output is equal to internally generated reliability L minus the sum of all inputs to that node.

The BCJR MAP algorithm always starts and ends at the all-zero state since we always terminate the

trellis as described in [13]. We assumed 7r] -- I identity; however, any rq can be used.

L2

Fig. 5. Signal flow graph for
extrinsic information.

The overall decoder is composed of block decoders D, connected in parallel, as in Fig. 6 (when the

switches are in position P), which can be implemented as a pipeline or by feedback. A serial imple-
mentation is also shown in Fig. 6 (when the switches are in position S). Based on [13, Fig. 5], a serial

implementation was proposed in [21]. For those applications where the systematic bits are not transmit-
ted or for parallel concatenated trellis codes with high-level modulation, we should set L0 = 0. Even

in the presence of systematic bits, if desired, one can set L0 = 0 and consider Y0 as part of Yl. If the

systematic bits are distributed among encoders, we use the same distribution for Y0 among the received
observations for MAP decoders.

At this point, further approximation for iterative decoding is possible if one term corresponding to

a sequence u dominates other terms in the summation in the numerator and denominator of Eq. (40).

Then the summations in Eq. (40) can be replaced by "maximum" operations with the same indices, i.e.,
max

replacing _-_u:u_=i with u:u_=i for i = 0, 1. A similar approximation can be used for ]-,2k and Lak in

Eq. (43). This suboptimal decoder then corresponds to an iterative decoder that uses AL-BCJR rather

than BCJR decoders. As discussed, such approximations have been used by replacing _ with max in the

log-BCJR algorithm to obtain AL-BCJR. Clearly, all versions of SW-BCJR can replace BCJR (MAP)

decoders in Fig. 6.

For turbo codes with only two constituent codes, Eq. (45) reduces to

78



ry0

_o

P

I I

L i-(m/
"" I ' ' IswLB°JR'I ' ' ÷vl

Yl

I I

}

I._(m)
' II Iog-BCJR 2 • ,r

P ., ISWL'BCJR

, L
Y2

I I
I i

(, j =._1_--_1 Iog-BCJR 3 I

Y3

S_

DECODED

BITS

Fig. 6. Iterative decoder structure for three parallel concatenated codes.

L(m+l) a_m)f(yl, I_0, !_(2m), k)lk _--

L(m+l) = e_m)f(y2, Lo, L_ _), k)2k

for k = 1, 2,.-., n, and m = 1,2,..-, where, for each iteration, (_m) and c_ m) can be optimized (simulated

annealing) or set to 1 for simplicity. The decoding configuration for two codes is shown in Fig. 7. In this

special case, since the paths in Fig. 7 are disjointed, the decoder structure can be reduced to a serial mode

structure if desired. If we optimize (_m) and _(2m), our method for two codes is similar to the decoding

method proposed in [6], which requires estimates of the variances of Llk and L2k for each iteration in

the presence of errors. It is interesting to note that the concept of extrinsic information introduced in

[6] was also presented as "partial factor" in [22]. However, the effectiveness of turbo codes lies in the

use of recursive convolutional codes and random permutations. This results in time-shift-varying codes

resembling random codes.

In the results presented in tile next section, we will use a parallel concatenated code with only two
constituent codes.
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VIII. Simulation Results

In this section, we will present some simulation results obtained applying the iterative decoding algo-
rithm described in Section VII, which, in turn, uses the optimum BCJR and the suboptimal, but simpler,

SWAL2-BCJR as embedded MAP algorithms. All simulations refer to a rate 1/3 PCCC with two equal,

recursive convolutional constituent codes with 16 states and generator matrix

1 D + D 3 + D41a(D)= 1, _T_¥_ _ j

and an interleaver of length 16,384 designed according to the procedure described in [13], using an

S-random permutation with S = 40. Each simulation run examined at least 25,000,000 bits.

In Fig. 8, we plot the bit-error probabilities as a function of the number of iterations of the decoding

procedure using the optimum block BCJR algorithm for various values of the signal-to-noise ratio. It can
be seen that the decoding algorithm converges down to BER = 10 -5 at signal-to-noise ratios of 0.2 dB

with nine iterations. The same curves are plotted in Fig. 9 for the case of the suboptimum SWAL2-BCJR

algorithm. In this case, 0.75 dB of signal-to-noise ratio is required for convergence to the same BER and
with the same number of iterations.

In Fig. 10, the bit-error probability versus the signal-to-noise ratio is plotted for a fixed number

(5) of iterations of the decoding algorithm and for both optimum BCJR and SWAL2-BCJR MAP de-
coding algorithms. It can be seen that the penalty incurred by the suboptimum algorithm amounts
to about 0.5 dB. This figure is in agreement with a similar result obtained in [12], where all MAP
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algorithms were of the block type. The penalty is completely attributable to the approximation of the

sum of exponentials described in Section V.B. To verify this, we have used a SW2-BCJR and compared

its results with the optimum block BCJR, obtaining the same results.

Finally, in Figs. 11 and 12, we plot the number of iterations needed to obtain a given bit-error prob-

ability versus the bit signal-to-noise ratio, for the two algorithms. These curves provide information on

the delay incurred to obtain a given reliability as a function of the bit signal-to-noise ratio.
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IX. Conclusions

We have described two versions of a simplified maximum a posteriori decoding algorithm working in

a sliding window form, like the Viterbi algorithm. The algorithms can be used as a building block to

decode continuously transmitted sequences obtained by parallel concatenated codes, without requiring

code trellis termination. A heuristic explanation of how to embed the maximum a posteriori algorithms

into the iterative decoding of parallel concatenated codes was also presented. Finally, the performances

of the two algorithms were compared on the basis of a powerful rate 1/3 parallel concatenated code.
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Appendix

Circuits to Implement the MAP Algorithm for Decoding

Rate 1In Component Codes of a Turbo Code

In this appendix, we show the basic circuits required to implement a serial additive MAP algorithm

for both block log-BCJR and SW-log-BCJR. Extension to a parallel implementation is straightforward.

Figure A-1 shows the implementation 9 of Eq. (18) for the forward recursion using a lookup table for

evaluation of log(1 + e-Z), and subtraction of maxj{Ak(Sj)} from Ak(Si) is used for normalization to

prevent buffer overflow. 10 The circuit for maximization can be implemented simply by using a comt)arator

and selector with feedback operation. Figure A-2 shows the implementation of Eq. (19) for the backward

recursion, which is similar to Fig. A-1. A circuit for computation of log(Pk(uly)) from Eq. (4) using

Eq. (20) for final computation of bit reliability is shown in Fig. A-3. In this figure, switch 1 is in position 1

and switch 2 is open at the start of operation. The circuit accepts Ek(Si, u) for i = 1, then switch 1 moves

to position 2 for feedback operation. The circuit performs the operations for i = 1, 2,. • •, N. V_rhen the

circuit accepts Ek(Si,u) for i = N, switch 1 goes to position 1 and switch 2 is closed. This operation is

done for u = 1 and u = 0. The difference between log(Pk(lly)) and log(Pk(0]y)) represents the reliability

value required for turbo decoding, i.e., the value of L k in Eq. (35).

_LAk-I(S_(1))

BRANCH M ETRIC_._

rk(XO,Si))

i

Ak(Si)

+
I ORMALIZE

Ak(Si) - max {Ak(Sj) }

+
NORMALIZED Ak(Si)

Ak_ 1(S_O))

SELECT
1 OF2

LOOKUP J_I____kJ!J.TABLE

Iog(l+e-_

Fig. A-1. Basic structure for forward computation in the Iog-BCJR MAP algorithm.

BRANCH METRIC

+ Fk(X(O,Si))

9 For feed-forward and nonconventional recursive convolutional codes, the notations in Fig. A-1 should be changed according

to Footnotes 2 and 5.

10 Simpler normalization can be achieved by monitoring the two most significant bits. When both of them are one, then we

reset all the mo6t significant bits to zero. This method increases the bit representation by an additional 2 bits.
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+
Bk+l(SiO))

+
Bk+l(Si(O))

BRANCH METRIC =f+_

Fk+ 1(x(S/,1)) I,,;_

r

)

[ II ]

It+

ek(Si)

¢
NORMALIZE

Bk(Si)- max{Bk(Sj)}

¢
NORMALIZEDBk(Si)

/,

==1COMPARE I_"1

I

I SELECT1 OF2

ILOOKOP
I TABLE

log (1 + e -x)

P'+
',_ .._ BRANCH METRIC

J_ Fk+l(X(Si,1))

Fig. A-2. Basicstructurefor backwardcomputationin the Iog-BCJR MAPalgorithm.

We propose two simplifications to be used for computation of log(1 + e -s) without using a lookup
table.

Approximation 1: We used the approximation log(1 + e -x) _ -ax + b, 0 < x < b/a where b = log(2),

and we selected a = 0.3 for the simulation. We observed about a 0.1-dB degradation compared with the

full MAP algorithm for the code described in Section VIII. The parameter a should be optimized, and it

may not necessarily be the same for the computation of Eq. (18), Eq. (19), and log(Pk(uly)) from Eq. (4)

using Eq. (20). We call this "linear" approximation.

Approximation 2: We take

0 ifx>_log(1 + e -=)
c ifx<_

We selected c = log(2) and the threshold 7/ = 1.0 for our simulation. We observed about a 0.2-dB
degradation compared with the full MAP algorithm for the code described in Section VIII. This threshold

should be optimized for a given SNR, and it may not necessarily be the same for the computation

of Eq. (18), Eq. (19), and log(Pk(uJy)) from Eq. (4) using Eq. (20). If we use this approximation,

the log-BCJR algorithm can be built based on addition, comparison, and selection operations without

requiring a lookup table, which is similar to a Viterbi algorithm implementation. We call this "threshold"

approximation. At most, S- to 10-bit representation suffices for all operations (see also [12] and [16]).
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1 OF2

I LOOKUP
TABLE x
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,k SWITCH 2

log Pk(uly)

Fig. A-3. Basic structure for bit reliability computation in the
Iog-BCJR MAP algorithm.
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